澳门新萄京:迭代和列表生成式,Python编制程序
分类:www.澳门新萄京赌场

Python编程核心内容之二——切片、迭代和列表生成式,

  Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ

  最近太忙啦。很多事情需要自己处理,感觉时间不够用啊~~今后,博客更新时间可能会慢下来,哈哈,正所谓“人不为己,天诛地灭”嘛。嘿嘿,没这么回事,说笑的……好像有扯远了。OK,回归正题,下面将回到Python先~

  Python编程中,你如果要编写出很多有用的程序,必须掌握数据类型、语句和函数。对于Python编程,原则有二:一是代码不是越多越好,而是越少越好;二是代码不是越复杂越好,而是越简单越好。你还想“一行代码两块钱”。效率决定一切。

  下面来个例子(不然,全是文字,会晕~~~)【实现1,3,5,7,9,……99的列表】:

 1 #赚钱版代码
 2 >>>n = 1
 3 >>>L = []
 4 >>>while n <= 99:
 5 ...    L.append(n)
 6 ...    n = n   2
 7 ...
 8 >>>print(L)        #好多money,但老板不一定会给噢
 9 #略缩版代码
10 >>>L= list(range(1,100,2))
11 >>>print(L)
12 #终极版代码
13 >>>[x for x in range(1,100,2)]

  其实,上述代码涉及到的代码主要包括循环、range()、分片、列表生成式。通过例子,我们知道:Python提供了很多有用的高级特性,灵活运用这些特性,可以减少我们很多代码量,提高效率。

  Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ

切片

L[0:3]表示,从索引0开始取,直到索引3澳门新萄京:迭代和列表生成式,Python编制程序核心内容之二。为止,但不包括索引3。即索引012,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L =['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[:3] ['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

记住倒数第一个元素的索引是-1

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

S = "abcdefg"
print(S[:2]) # ab
print(S[::2]) # aceg
print(S[::3]) # adg 

2017年6月9日17:57:55

1.切片

取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
...     r.append(L[i])
... 
>>> r
['Michael', 'Sarah', 'Tracy']

这样太麻烦了

>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

如果第一个索引是0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

例子
切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后10个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

切片

  切片是Python编程的高级特性之一。切片可以访问一定范围内的元素,通过冒号(:)隔开两个索引实现。

1 #切片的魔力
2 >>>L = [1,2,3,4,5,6,7,8,9,10]
3 >>>L[2:5]
4 3,4,5
5 >>>L[0:1]
6 1

  切片操作的实现需要提供两个索引作为边界,第一个索引的元素是包含在切片内的,而第二个则不包含在切片内。

  注:如果第一个索引是0,可以省略:

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[0:3]
3 1,2,3
4 >>>L[:3]
5 1,2,3

  既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片:

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[-2:]
3 9,10
4 >>>L[-2,-1]
5 9

  Python 3.x版本中,切片操作还支持步长

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[::1]
3 [1,2,3,4,5,6,7,8,9,10]
4 >>>L[0:10:2]
5 [1,3,5,7,9]
6 >>>L[1:10:5]
7 [2,7]

  tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

1 >>> (0, 1, 2, 3, 4, 5)[:3]
2 (0, 1, 2)

  字符串’xxx’也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

1 >>> 'ABCDEFG'[:3]
2 'ABC'
3 >>> 'ABCDEFG'[::2]
4 'ACEG'

  Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

  Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

  最近太忙啦。很多事情需要自己处理,感觉时间不够用啊~~今后,博客更新时间可能会慢下来(但不能荒废了学习,要学习就得进行总结,哪怕借鉴前辈的学习资料),因此,无论闲忙,总是要学会总结。哈哈,正所谓“人不为己,天诛地灭”嘛。嘿嘿,没这么回事,说笑的……好像又扯远了。OK,回归正题,下面将回到Python先~

迭代

如果给定一个list或tuple,我们可以通过for澳门新萄京:迭代和列表生成式,Python编制程序核心内容之二。循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
a
c
b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':
...     print(ch)
...
A
B
C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

任务:

2.迭代

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC'
:...  print(ch)
...ABC

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

迭代

  Iteration是Python编程中最重要的高级特性。迭代(Iteration):给定一个list或tuple,通过for循环来遍历这个list或tuple。故而,Python是通过for...in循环实现迭代的。

  list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

1 >>> d = {'A': 1, 'B': 2, 'C': 3}
2 >>> for key in d:
3 ...    print(key)
4 ...
5 A
6 B
7 C
8 >>> 

  因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

  默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

  由于字符串也是可迭代对象,因此,也可以作用于for循环:

1 >>> for ch in 'ABC':
2 ...     print(ch)
3 ...
4 A
5 B
6 C

  因此,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

  那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

1 >>> from collections import Iterable
2 >>> isinstance('abc', Iterable) # str是否可迭代
3 True
4 >>> isinstance([1,2,3], Iterable) # list是否可迭代
5 True
6 >>> isinstance(123, Iterable) # 整数是否可迭代
7 False

  在for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

1 >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
2 ...     print(x, y)
3 ...
4 1 1
5 2 4
6 3 9

  任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

  Python编程中,你如果要编写出很多有用的程序,必须掌握数据类型、语句和函数。对于Python编程,原则有二:一是代码不是越多越好,而是越少越好;二是代码不是越复杂越好,而是越简单越好。你还想“一行代码两块钱”。效率决定一切。

列表生成式

即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

列表生成式则可以用一行语句代替循环生成上面的list([1x1, 2x2, 3x3, ..., 10x10]):

[x * x for x in range(1, 11)]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m   n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到

 

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
...     print(k, '=', v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k   '='   v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

最后把一个list中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]

练习2

L1 = ['Hello', 'World', 18, 'Apple', None]
print([x.lower() if isinstance(x, str) else x for x in L1])

  看完高级部分

3.列表生成式

表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...  L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m   n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents',
 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 
'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

列表生成式也可以使用两个变量来生成list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k   '='   v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

联系
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()
方法,所以列表生成式会报错:

>>> L = ['Hello', 'World', 18, 'Apple', None]
>>> [s.lower() for s in L]Traceback (most recent call last): File "
<stdin>", line 1, in <module> File "<stdin>", line 1, in 
<listcomp>AttributeError: 'int' object has no attribute 'lower'

使用内建的isinstance函数可以判断一个变量是不是字符串:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s, str)]
print(L2)

列表生成式

  列表生成式作为Python编程的高级特性,可以简化不少代码量。列表生成式(List Comprehensions)是Python内置的非常简单却强大的可以用来创建list的生成式。

   举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

1 >>> list(range(1, 11))
2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

  但如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?方法一是循环:

1 >>> L = []
2 >>> for x in range(1, 11):
3 ...    L.append(x * x)
4 ...
5 >>> L
6 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

  但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

1 >>> [x * x for x in range(1, 11)]
2 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

  写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

1 >>> [x * x for x in range(1, 11) if x % 2 == 0]
2 [4, 16, 36, 64, 100]

  列表生成式也可以使用两个变量来生成list:

1 >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
2 >>> [k   '='   v for k, v in d.items()]
3 ['y=B', 'x=A', 'z=C']

  把一个list中所有的字符串变成小写:

1 >>> L = ['Hello', 'World', 'IBM', 'Apple']
2 >>> [s.lower() for s in L]
3 ['hello', 'world', 'ibm', 'apple']

  列表生成式不是真正的语句,而是看起来像循环的表达式,这是将它归为循环语句的原因。该功能很强大,但大多数情况下,直接使用循环和条件语句也能完成。然而,列表生成式的程序十分简洁,更加易读。

  下面来个例子:

1 L1 = ['Hello', 'World', 18, 'Apple', None]
2 L2= [s.lower() for s in L1 if isinstance(s,str)]

Python版本:3.6.2 操作系统:Windows 作者:SmallWZQ 最近太忙啦。很多事情需要自己处理...

  下面来个例子(不然,全是文字,会晕~~~)【实现1,3,5,7,9,……99的列表】:

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

g = (x * x for x in range(10))
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

next(g)

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a   b
        n = n   1
    return 'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a   b
        n = n   1
    return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
<generator object fib at 0x104feaaa0>

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
尝试:在上面yield b 下边添加一行print(b),调用fib(6),并没有任何输出,只有遍历f的时候才会有输出。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break

 

g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

 

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

笔记:
1.掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。
2.在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。
基于这一思想,我们来介绍Python中非常有用的高级特性,一行代码能实现的功能,决不写5行代码。
3.对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作
4.在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
5.有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。
6.tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
7.如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
8.在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的
9.Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
10.ist这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
1.因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
2.默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.itervalues(),如果要同时迭代key和value,可以用for k, v in d.iteritems()。
3.字符串也是可迭代对象,因此,也可以作用于for循环
4.如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断
5.最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

4.生成式

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

菲波那切数列
这就是定义generator的另一种方法。如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a   b
        n = n   1
    return 'done'

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

例子--杨辉三角

def triangles():
    L = [1]
    while True:
        yield L
        L.append(0);
        L = [L[i-1]   L[i] for i in range(len(L))]
 1 #赚钱版代码
 2 >>>n = 1
 3 >>>L = []
 4 >>>while n <= 99:
 5 ...    L.append(n)
 6 ...    n = n   2
 7 ...
 8 >>>print(L)        #好多money,但老板不一定会给噢
 9 #略缩版代码
10 >>>L= list(range(1,100,2))
11 >>>print(L)
12 #终极版代码
13 >>>[x for x in range(1,100,2)]

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

  • 一类是集合数据类型,如listtupledictsetstr等;
  • 一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

可以使用isinstance()判断一个对象是否是Iterable对象:

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

  • 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
  • 可以使用isinstance()判断一个对象是否是Iterator对象:

    from collections import Iterator isinstance((x for x in range(10)), Iterator) True isinstance([], Iterator) False isinstance({}, Iterator) False isinstance('abc', Iterator) False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    >>> for i, value in enumerate(['A', 'B', 'C']):
    ...     print i, value
    ...
    0 A
    1 B
    2 C
6.上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

5.迭代器

Iterable对象是可以知道长度的
Iterator对象不知道长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

  其实,上述代码涉及到的代码主要包括循环、range()、分片、列表生成式。通过例子,我们知道:Python提供了很多有用的高级特性,灵活运用这些特性,可以减少我们很多代码量,提高效率。

小结

  • 凡是可作用于for循环的对象都是Iterable类型;
  • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
  • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

 

 

    >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
    ...     print x, y
    ...
    1 1
    2 4
    3 9
7.任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。
8.列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
9.for循环其实可以同时使用两个甚至多个变量,比如dict的iteritems()可以同时迭代key和value:
10.运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。
1.生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
2.generator(生成器)也是可迭代的对象。
如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
3.最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
4.generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

切片

  切片是Python编程的高级特性之一。切片可以访问一定范围内的元素,通过澳门新萄京,冒号(:)【该冒号是英文版的】隔开两个索引实现。

  关于Python编程中的符号(比如冒号,逗号,括号……)都是英文版的【重要的事情说好多遍,因为自己平时编程也会时常出现这类错误】,否则程序编译会有Error,而且这种类型的错误还不好发现。因此,细节决定高度~~~

1 #切片的魔力
2 >>>L = [1,2,3,4,5,6,7,8,9,10]
3 >>>L[2:5]
4 3,4,5
5 >>>L[0:1]
6 1

  切片操作的实现需要提供两个索引作为边界,第一个索引的元素是包含在切片内的,而第二个则不包含在切片内。

  注:如果第一个索引是0,可以省略:

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[0:3]
3 1,2,3
4 >>>L[:3]
5 1,2,3

  既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片:

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[-2:]
3 9,10
4 >>>L[-2,-1]
5 9

  Python 3.x版本中,切片操作还支持步长

1 >>>L = [1,2,3,4,5,6,7,8,9,10]
2 >>>L[::1]
3 [1,2,3,4,5,6,7,8,9,10]
4 >>>L[0:10:2]
5 [1,3,5,7,9]
6 >>>L[1:10:5]
7 [2,7]

  tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

1 >>> (0, 1, 2, 3, 4, 5)[:3]
2 (0, 1, 2)

  字符串’xxx’也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

1 >>> 'ABCDEFG'[:3]
2 'ABC'
3 >>> 'ABCDEFG'[::2]
4 'ACEG'

  Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

  Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

总结:

迭代

  Iteration是Python编程中最重要的高级特性。迭代(Iteration):给定一个list或tuple,通过for循环来遍历这个list或tuple。故而,Python是通过for...in循环实现迭代的。

  list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

1 >>> d = {'A': 1, 'B': 2, 'C': 3}
2 >>> for key in d:
3 ...    print(key)
4 ...
5 A
6 B
7 C
8 >>> 

  因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

  默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

  由于字符串也是可迭代对象,因此,也可以作用于for循环:

1 >>> for ch in 'ABC':
2 ...     print(ch)
3 ...
4 A
5 B
6 C

  因此,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

  那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

1 >>> from collections import Iterable
2 >>> isinstance('abc', Iterable) # str是否可迭代
3 True
4 >>> isinstance([1,2,3], Iterable) # list是否可迭代
5 True
6 >>> isinstance(123, Iterable) # 整数是否可迭代
7 False

  在for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

1 >>> for x, y in [(1, 1), (2, 4), (3, 9)]:
2 ...     print(x, y)
3 ...
4 1 1
5 2 4
6 3 9

  任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

  切片

列表生成式

  列表生成式作为Python编程的高级特性,可以简化不少代码量。列表生成式(List Comprehensions)是Python内置的非常简单却强大的可以用来创建list的生成式。

   举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

1 >>> list(range(1, 11))
2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

  但如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?方法一是循环:

1 >>> L = []
2 >>> for x in range(1, 11):
3 ...    L.append(x * x)
4 ...
5 >>> L
6 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

  但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

1 >>> [x * x for x in range(1, 11)]
2 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

  写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

1 >>> [x * x for x in range(1, 11) if x % 2 == 0]
2 [4, 16, 36, 64, 100]

  列表生成式也可以使用两个变量来生成list:

1 >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
2 >>> [k   '='   v for k, v in d.items()]
3 ['y=B', 'x=A', 'z=C']

  把一个list中所有的字符串变成小写:

1 >>> L = ['Hello', 'World', 'IBM', 'Apple']
2 >>> [s.lower() for s in L]
3 ['hello', 'world', 'ibm', 'apple']

  列表生成式不是真正的语句,而是看起来像循环的表达式,这是将它归为循环语句的原因。该功能很强大,但大多数情况下,直接使用循环和条件语句也能完成。然而,列表生成式的程序十分简洁,更加易读。

  下面来个例子:

1 L1 = ['Hello', 'World', 18, 'Apple', None]
2 L2= [s.lower() for s in L1 if isinstance(s,str)]

  迭代

  列表生成式

  生成器

都很重要,而且理解上也还好,切片是不是就相当于其他语言中的字符串截取函数,迭代就是循环啊,列表生成式是很灵活,很方便,生成器就是大大减少内存,当用户需要的时候在提取出来。

加油,该看函数式编程了!

本文由澳门新萄京发布于www.澳门新萄京赌场,转载请注明出处:澳门新萄京:迭代和列表生成式,Python编制程序

上一篇:澳门新萄京:动态规划,给定一个大写字母 下一篇:没有了
猜你喜欢
热门排行
精彩图文